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We consider a nominally uniform flow over a semi-infinite flat plate and show how
a small slowly modulated (predominantly streamwise) disturbance of the upstream
flow is amplified by leading-edge bluntness effects and eventually develops into a
small-amplitude but nonlinear spanwise motion far downstream from the edge. This
motion is then imposed on the viscous boundary layer at the surface of the plate –
causing an order-one change in its profile shape, which can reduce the wall shear to
zero and thereby causes the boundary layer to separate. The present study is similar
to an earlier steady flow analysis, but the unsteady effects now cause the upstream
boundary layer to develop inflectional profiles which can support rapidly growing
inviscid instabilities that give rise to transition before the separation can occur.

1. Introduction
It is now understood that boundary-layer transition does not follow the classical

Tollmien–Schlicting wave growth mechanism (sometimes referred to as natural
transition) when the free-stream turbulence intensity is greater than about 1 %.
Transition is then caused by the breakdown of elongated streamwise streaks, or
Klebanoff modes, into turbulent spots when the turbulence level is not too high.
Transition at even higher levels seems to take place by a different mechanism, which
has been largely ignored by experimentalists, who usually dismiss it after noting
that the turbulent spots appear to arise spontaneously in their experiments with
no apparent precursors. Numerical studies of Nagarajan, Lele & Ferziger (2007,
hereinafter referred to as NFL) suggest that this phenomenon may be considerably
more complex than that – with the spots again evolving from a linear instability.
However, unlike the lower-turbulence-level transition, leading-edge bluntness effects
now seem to play an important role.

Investigations of leading-edge bluntness effects were carried out at low free-stream
turbulence levels by Kendall (1991) and Watmuff (1997), who reported that changing
the aspect ratio of the leading-edge ellipse seemed to affect the location of transition
onset but had no observable affect on the Klebanoff-mode amplitude. However, the
free-stream disturbance level was relatively low and the plates were fairly thin in these
experiments. Klingmann et al. (1993) and Westin et al. (1994), who used an asymmetric
leading edge to eliminate adverse pressure-gradient effects, found significant upstream
movement of the transition onset location for slightly off-design conditions.

Goldstein, Leib & Cowley (1992, hereinafter referred to as GLC) showed that
wake-like disturbances in the upstream flow (corresponding to wall normal vorticity)
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inviscidly stretch and tilt around the leading edge of the plate to produce enhanced
streamwise vorticity which is then further amplified by the surface boundary layer
when its spanwise length scale is of the order of the boundary-layer thickness. How-
ever, with the scaling used in that paper, the inviscid solution eventually develops
a singularity that causes the viscous boundary layer to separate. The three-
dimensional boundary-layer profiles remain non-inflectional everywhere upstream
of the separation point and therefore, cannot support short-wavelength Rayleigh
(i.e. inviscid) instabilities that grow on the inviscid time scale – which can be much
shorter than the viscous time scale on which Tollmien–Schlicting waves grow. And
the corresponding growth rates can then be much more rapid.

Goldstein & Leib (1993) considered the effect of weak streamwise vorticity in the
upstream flow with the same asymptotic scaling. The leading-edge effects become
insignificant in this model and only an infinitely thin plate was considered. They
showed that this initially linear perturbation of the uniform upstream flow ultimately
leads to a small-amplitude but nonlinear cross-flow far downstream of the leading
edge which again causes the boundary layer to separate. The separation now
occurs much further downstream allowing the upstream velocity profiles to become
slightly inflectional. The resulting flow can then support rapidly growing Rayleigh
instabilities that can break down into turbulent spots before the singularity develops.
Goldstein (1997), following a suggestion of Kendall (personal communication), later
proposed this as a paradigm of Klebanoff-mode transition and the Goldstein & Leib
analysis (1993) was eventually extended to smaller turbulence Reynolds numbers
by Wundrow & Goldstein (2001) in order to avoid the downstream singularity and
to further investigate the secondary instability. The main conclusions of this latter
paper are in qualitative agreement with the earlier high-Reynolds-number analysis of
Goldstein & Leib (1993).

NFL used their numerical simulations to study the effects of leading-edge bluntness
on boundary-layer transition. Their results seem to show that two different transition
mechanisms can occur, depending on the free-stream turbulence level and amount
of leading-edge bluntness. When they are low the transition appears to follow the
Klebanoff mode paradigm discussed in Goldstein & Leib (1993), Goldstein (1997)
and Wundrow & Goldstein (2001): formation of elongated streaks with spanwise
length scale comparable to the boundary-layer thickness, local instability on the low-
speed portion of the streak leading to turbulent spot formation. However, transition
appears to take place by a somewhat different mechanism when the turbulence and
bluntness are significantly higher. Wavepacket-like precursors to turbulent spots again
appear to grow on the streak-like background disturbance inside the boundary layer
and eventually dominate the motion; but overlaying the spot precursors on streaks
suggested that the wave packets were not located on the low-speed streaks. NFL also
point out that the wave packet precursors can be observed in their simulations only
after they have undergone considerable growth.

Although the Goldstein & Leib (1993) and GLC analyses can explain the formation
of low-speed streaks (i.e. velocity deficit portions of the boundary layer) neither of
them can fully explain the numerical results found by NFL. The purpose of the present
paper is to show that these results can be explained by extending the GLC analysis
to include a slow unsteady modulation of the upstream wake-like disturbances. These
modulations eventually cause the surface boundary layer to become fully unsteady
and develop low-speed streaks that move across the layer. However, unlike the GLC
case, the instantaneous streamwise velocity profiles can now become inflectional on
the low-speed streaks and remain inflectional after the streak has moved to a new
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spanwise location – with the inflection point moving to the inner portion of the
boundary layer once this has occurred.

Following Cowley (1985), Wu (1992) and Wu, Lee & Cowley (1993), we then show
that wavepacket-like disturbances can grow rapidly on these inflectional profiles. Wave
packets initiated on the streaks can become much larger than those initiated between
the streaks, but reach their maximum amplitudes only after the low-speed streak has
moved to its new transverse location. As usual the maximum disturbance amplitude
tends to occur at the inflection point and the instability growth rate tends to decrease
as the inflection point moves toward the wall. (The corresponding inviscid instability
reduces to the type found by Wu & Choudhari, 2003 once it reaches the wall.) Our
results show that the overall wave-packet growth is relatively small when the product
of the upstream disturbance amplitude and the leading-edge thickness is large and is
relatively large when this product is small. The wave packets are, therefore, likely to
reach large amplitudes and become nonlinear when the local velocity profiles are still
streak-like for thin plates and/or low free-stream turbulence levels but are unlikely to
reach such amplitudes until the low-speed streaks have moved to a new location when
the plate is sufficiently thick and/or the free-stream turbulence levels are sufficiently
high.

Since the spot precursor wave packets in the NFL simulations may not have
reached detectable amplitudes until the streaks had moved to a new location in the
boundary layer when their plates were sufficiently thick and/or their free-stream
turbulence levels were sufficiently high, this could explain why these packets appeared
to grow on the turbulent streaks when either or both of these quantities were small
and to grow on the relatively undisturbed area between the streaks when they were
not. Since the streaks are forced to lie beneath the region of maximum free-stream
vorticity for the simple upstream distortion imposed in our computations, this is
consistent with NFL’s observation that ‘The spanwise profiles in figure 17(d) show
the localized disturbance left behind by the [free stream] vortex pair, which has moved
out of the frame. The spot precursor of figure 13(d) has a similar structure.’ It is
reasonable to expect that similar progressions occurred in the higher-turbulence-level
experiments alluded to above – but with the spot forming before the precursors could
reach observable amplitude. However, it should be emphasized that these conclusions
are somewhat speculative because the present results are based on high-Reynolds-
number asymptotics that may not apply at the more moderate Reynolds numbers
of the simulations. But, the good qualitative agreement between the high-Reynolds-
number analysis of Goldstein & Leib (1993) and the moderate-Reynolds-number
Wundrow & Goldstein (2001) study lends considerable support to these inferences.

More specifically, the paper shows how small, slowly modulated, spanwise non-
uniformities in the upstream velocity field can produce somewhat larger streamwise
vorticity fields which can, in turn, produce significant (i.e. order-one) variations in
the streamwise boundary-layer profiles. We assume that the characteristic dimension
of the rounded leading edge is of the order of the spanwise length scale, say λ,
of the upstream disturbance field, and that the Reynolds number based on λ, say
Rλ, is large. Then the upstream distortion interacts linearly with the leading edge
with the resulting inviscid flow being described well by the usual ‘rapid distortion’
theory (Goldstein 1978; Hunt & Carruthers 1990). The corresponding steady-flow
analysis was, at least in principle, given by Lighthill (1956) who showed that the
upstream distortion produces a spanwise velocity field that becomes logarithmically
infinite at the surface of the body. This singularity must ultimately be removed by
viscous effects, which (as in Toomre 1960) are confined to the viscous boundary layer
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(with the Reynolds-number amplitude scaling being considered herein). Our analysis
shows that inviscid crossflow effects produce only a linear perturbation to the
boundary-layer flow in the vicinity of the leading edge, where the undisturbed layer
undergoes its most rapid streamwise development, but that they produce an order-one
change in the mean boundary-layer profiles at large distances downstream where its
streamwise development is on a considerably longer scale.

However, the linear rapid distortion-theory solution, which provides an adequate
description of the external inviscid flow in the vicinity of the leading edge, breaks down
at large streamwise distances, with the breakdown moving further upstream as the
surface of the plate is approached. A new nonlinear solution then has to be obtained
in order to describe the external inviscid flow in the physically interesting region
where crossflow effects produce significant (i.e. order-one) changes in the boundary-
layer profiles. The thickness of this nonlinear inviscid region is small compared to its
streamwise dimension, but large compared to the boundary-layer thickness. It serves
as a kind of ‘blending layer’ which connects the boundary-layer solution to the linear
rapid-distortion-theory solution, which applies at an order-one (on the scale of λ)
distance from the wall.

The blending-layer flow is governed by the inviscid Burgers equation (sometimes
called the kinematic wave equation) whose solution eventually develops a singularity
at a certain spanwise location and at a finite downstream position owing to the
well-known wave-steepening effects associated with that solution. This also leads to
a singularity (signified by the vanishing of the wall shear) in the boundary-layer flow
at the same (spanwise and streamwise) location. This is similar to the chain of events
described in the GLC paper, but the unsteady effects in the present analysis now
cause the upstream boundary layer to develop inflectional profiles, which can support
rapidly growing inviscid instabilities that give rise to transition before the separation
can occur. The present work, therefore, focuses on the wave-packet growth that takes
place on these profiles.

The overall plan of the paper is as follows. Section 2.1 describes the linear inviscid
flow produced by the upstream distortion field and the initial breakdown of the
relevant linear rapid-distortion theory solution is discussed in § 2.2. The appropriate
nonlinear, but inviscid, solution that eliminates this breakdown is described in § 3.

The viscous boundary-layer problem is formulated in § 4 and its numerical solution
is described in § 5. The results show that the boundary layer develops streamwise
streaks (i.e. elongated regions of low-speed flow) and inflectional streamwise velocity
profiles that can support linear wave-packet growth.

The wave-packet solutions are constructed in § 6.1. The phase of these packets is
found by solving a first-order nonlinear partial differential equation obtained from the
local dispersion relation of an appropriate Rayleigh equation. Section 6.2 describes
the initial-value problem for that equation and its numerical solution is discussed in
§ 6.3. Section 7 summarizes the main findings of this work and discusses the physical
implications of the numerical results.

2. Formulation and breakdown of linear solution
We are concerned with the flow over a semi-infinite flat plate of finite thickness h∗

with leading-edge ellipse of dimension O(h∗). The upstream flow is assumed to be
nominally uniform, except for a small O(ε) purely convected perturbation, say U∞u∞,
which has a transverse length scale λ= O(h∗) and is assumed to depend on the time
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and streamwise coordinate only through the slow variables

x̄ ≡ ε āx/σ, t̄ ≡ ε āt/σ, (2.1)

where the three parameters ε � σ � 1 and ā = O(1) will be specified below. It must,
therefore, be of the form

u∞ =
{

u∞(x̄ − t̄ , x⊥),
ε

σ
ā v̄∞ (x̄ − t̄ , x⊥) ,

ε

σ
ā w̄∞ (x̄ − t̄ , x⊥)

}
, (2.2)

in order to satisfy the continuity equation

∇ · u∞ =
∂u∞

∂x̄
+

∂v̄∞

∂y
+

∂w̄∞

∂z
= 0, (2.3)

where

x⊥ ≡ {0, y, z}, (2.4)

and we are assuming that all lengths are normalized by λ, the time t by λ/U∞ and
the velocity u = {u, v , w} by the uniform upstream mean flow velocity U∞. The flow
is assumed to be incompressible, with density ρ and the pressure p is normalized by
ρU 2

∞. The plate thickness h∗ is, for simplicity, taken to be O(λ), and the x-coordinate
is assumed to be in the streamwise direction with the origin at the leading edge
while the origin of the y-coordinate coincides with the flat surface of the plate far
downstream in the flow.

Finally, we require that the Reynolds number Rλ = U∞λ/ν, where ν is the kinematic
viscosity, be large enough to ensure that the viscous effects are initially confined
to a thin boundary layer at the surface of the plate which is predominantly two-
dimensional near the forward stagnation point. This will occur (and the boundary
layer will then remain thin until nonlinear effects influence the external motion
downstream in the flow) if

lnRλ � 1

ε
� Rλ, (2.5)

which is satisfied reasonably well by the typical values of Rλ ∼ 5000 and ε ∼ 0.05 in
the NFL simulation.

2.1. The linear solution

Then the entire flow will be nearly two-dimensional in the vicinity of the leading edge,
i.e. in the region where x = O(1), with the three-dimensional effects being an O(ε)
perturbation of the two-dimensional base flow, say {U0(x, y), V0(x, y), 0}. Since the

viscous effects are confined to a thin region whose thickness is O(R−1/2
λ ), the solution

outside this region should expand as

u = {U0, V0, 0} + ε{ũ0, ṽ0, w̃0} + ε2{u1, v1, w1} + · · ·
= {U0, V0, 0} + ε ũ0 + ε2u1 + · · · , (2.6)

p = P0 + ε p̃0 + ε2p1 . . . , (2.7)

where ũ0 and p̃0 can depend on ε/σ .
The analysis in this and the following subsection is very similar to, but slightly more

complicated than, that of GLC, and, as in that reference, the complex conjugate mean
flow velocity ζ = U0 − iV0 (which is assumed to include the O(R−1/2

λ ) boundary-layer
displacement effects) is an analytic function of Z ≡ x + i[y + (h∗/λ)] that can be
expressed in terms of a complex potential, say

W̃ = Φ + iΨ, (2.8)
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where Φ is the velocity potential and Ψ is the streamfunction, in the usual way by

ς =
dW̃

dZ
. (2.9)

For definiteness, we suppose that Ψ =0 on the surface of the (body) plate and along
the stagnation streamline, and that Φ → 0 at the forward stagnation point.

The first-order perturbations are governed by the linearized Euler equations and
the decomposition introduced in Goldstein (1978; also see Goldstein 1979) can be
used to show that the relevant solution is determined by

ũ0 = ∇φ̃0 + ũI , (2.10)

where

ũI = u∞(Δ̄ − t̄ , X⊥)∇Δ +
ε

σ
ā[v̄∞(Δ̄ − t̄ , X⊥)∇Ψ + w̄∞(Δ̄ − t̄ , X⊥)k̂], (2.11)

Δ̄ ≡ εāΔ/σ, X⊥ ≡ {0, Ψ, z}, (2.12)

k̂ denotes the unit vector in the z-direction, the Lighthill (1956)–Darwin (1954) drift
function,

Δ ≡ Φ +

∫ Φ

−∞

[
1

U 2
0 (Ψ, Φ̃) + V 2

0 (Ψ, Φ̃)
− 1

]
dΦ̃, (2.13)

and the Lagrangian coordinate X⊥ behave as

Δ → x + O(x−1) as x → −∞, Δ → x + Δ+(y) + O(x−1), as x → ∞,

X⊥ → x⊥ + O(x−1), x → ±∞.

}
(2.14)

The potential φ̃0, which is related to the pressure by

p̃0 = −
(

U0

∂

∂x
+ V0

∂

∂y

)
φ̃0, (2.15)

is determined by

∇2φ̃0 = −∇ · (ũI ) = −∇ · [u∞(Δ̄ − t̄ , X⊥)∇Δ]

− ε

σ
ā∇ · [v̄∞(Δ̄ − t̄ , X⊥)∇Ψ + w̄∞(Δ̄ − t̄ , X⊥)k̂], (2.16)

and, finally, the normal component of ũ0 must vanish at the surface of the plate.

2.2. Breakdown of the linear solution

The expansions (2.6) and (2.7) are non-uniform in the vicinity of the plate since (2.10)
to (2.13) and the results of the Appendix in GLC show that the spanwise velocity w̃0

becomes infinite there as

w̃0 → ā u′
∞,0(x̄ − t̄ , z) lnΨ + O(1) as Ψ → 0, (2.17)

where

u∞,0 (x̄ − t̄ , z) ≡ u∞ (x̄ − t̄ , x⊥)|y=0 , (2.18)

the leading-edge bluntness parameter ā (which is related to the local potential flow
behaviour in the vicinity of the forward stagnation point) is the reciprocal of the
parameter a used in GLC and the prime denotes differentiation with respect to z.

As in GLC, the stagnation-line non-uniformity can be ignored because the linearized
equations give the correct solution (to the order of interest here) right up to the edge of
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the viscous boundary layer. Another, much more important, non-uniformity develops
far downstream in the flow where x becomes large and, as noted in GLC,

Ψ → y, U0 → 1, Φ → x + O(1), Δ → Δ+(y) + x + O(x−1), (2.19)

where

Δ+(y) =

∫ ∞

−∞

(
1

U 2
0 + V 2

0

− 1

)
dΦ → Δ0(y) − ā ln y as y → 0 (2.20)

with Δ0 remaining bounded as y→0. It, therefore, follows from (2.16) that

∇2φ̃0 → − ∂

∂y
u∞

(
x̄ − t̄ +

ε

σ
ā Δ+, x⊥

)
Δ′

+(y)

− ε

σ
ā

∂

∂y
v̄∞

(
x̄ − t̄ +

ε

σ
ā Δ+, x⊥

)
+ O(x−1) as x → ∞. (2.21)

These equations along with (2.10) and (2.14) suggest that φ̃0, p̃0 and ũ0 be re-expanded
as

φ̃ +
ε

σ
ā φ̃1 ≡ φ̃0 +

∫
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) dy, (2.22)

ũ0 → {u0, v0, w0} +
ε

σ
ā {u0,1, v0,1, w0,1} = u0 +

ε

σ
āu 0,1,

p̃0 → p0 +
ε

σ
ā p0,1,

⎫⎬
⎭ (2.23)

when x becomes large. Appendix A shows that

∇2φ̃ =
∂2

∂z2

∫
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) dy,

∇2φ̃1= −
[

∂

∂x̄
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) Δ+ (y) + v̄∞

(
x̄ − t̄ +

ε

σ
āΔ+, x⊥

)]
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.24)

that φ̃ becomes independent of x and, therefore, that (see (2.15))

u0 =

{
u∞ (x̄ − t̄ , x⊥) ,

∂φ̃

∂y
,
∂φ̃

∂z
− ∂

∂z

∫
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) dy

}
,

u0,1 =

{
∂

∂x̄

[
φ̃1 +

∫
Δ+ (y)

∂

∂y
u∞ (x̄ − t̄ , x⊥) dy

]
,

∂φ̃1

∂y
+ v̄∞ (x̄ − t̄ , x⊥) ,

∂φ̃1

∂z
+ w̄∞ (x̄ − t̄ , x⊥)

}
, (2.25)

p0 = 0. (2.26)

It can now be seen that the normal component of u0 will vanish at the plate if

∂φ̃

∂y
= 0 at y = 0, (2.27)

and that

φ̃ → β (x̄ − t̄ , z) − ā u′′
∞,0 (x̄ − t̄ , z)

y2

2
ln y + O(y2) as y → 0, (2.28)

φ̃1 → β1 (x̄ − t̄ , z) − ā2
∂2u′′

∞,0 (x̄ − t̄ , z)

∂x̄2

y

2
ln2 y + O (y ln y) as y → 0. (2.29)
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Substituting (2.6) and (2.7) into Euler’s equations and using the second member of
(2.14) along with (2.17) shows that

∂ u 1

∂x
+ ∇p1 → −u0 · ∇u0 →

−
[
φ̃y

∂

∂y
+

(
φ̃z −

∫
∂

∂z
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) dy

)
∂

∂z

]

×
{

u∞ (x̄ − t̄ , x⊥) , φ̃y, φ̃z − ∂

∂z

∫
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) dy

}
, (2.30)

where the term in square brackets is a linear operator. So introducing the change in
variable

x, t → x, τ ≡ t − x, (2.31)

putting

τ̄ ≡ ε

σ
ā (t − x) = t̄ − x̄ (2.32)

and using (2.20), (2.28) and (2.29) now shows that the first-order perturbation u1, p1

satisfies (2.20) to (2.23) of GLC with u ∞(z) replaced by u ∞,0(τ̄ , z) when y → 0, x → ∞,
which means that the variable τ̄ enters only parametrically in this region. (Recall that
ā is the reciprocal of the parameter a in GLC.) Since (2.20) implies that

∂

∂z

∫
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) dy → −ā ln y u′
∞,0(τ̄ , z) as y → 0, (2.33)

it follows from (2.6), (2.7), (2.17), (2.19), (2.25), (2.26) and arguments given near the
end of § 2.2 of GLC, that u, w, p satisfy (2.26) to (2.28) of GLC with d (z) replaced
by d (τ̄ , z) when y → 0 and x → ∞ and that that expansion again breaks down when

−εā x ln y = O (1) . (2.34)

3. Blending-layer solution
Then since the solution in the region (2.34), which we refer to as the ‘blending

layer’, is completely determined by the initial conditions (2.26) to (2.28) of GLC, the
analysis of § 3 of GLC where the new gauge functions σ (ε) and δ(ε) (see also (4.11))

σ (ε) = − 1

ln δ (ε)
→ 0 as ε → 0, (3.1)

along with the new scaled variables

x̄ ≡ ε ā x

σ
(3.2)

and

η ≡ −σ ln y =
ln y

ln δ
, (3.3)

are introduced, applies to the present problem as well. The important results are that
the pressure and cross-stream velocities in this region are now given by

p = ε2d (τ̄ , z) +
1

2

( ε

σ
ā e−η/σ

)2

[η2p̄0 (τ̄ , ξ, z) + σ η p̄1 (τ̄ , ξ, z) + O(σ 2)], (3.4)

v =
ε

σ
ā e−η/σ [ηv̄0 (τ̄ , ξ, z) + σ v̄1 (τ̄ , ξ, z) + O(σ 2)], (3.5)

w =
ε

σ
ā[ηw̄0 (τ̄ , ξ, z) + σ w̄1 (τ̄ , ξ, z) + O(σ 2)], (3.6)
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where

ξ ≡ x̄η, (3.7)(
∂w̄0

∂z

)2

= v̄2
0 = −p̄0/2, (3.8)

and the spanwise velocity

w̄0 = g (τ̄ , z − w̄0ξ ) , (3.9)

with g given by

g (τ̄ , z) = −u′
∞,0 (τ̄ , z) , (3.10)

and the variable τ̄ again entering only parametrically, will usually develop a singularity
at a finite value, say ξ = ξs , of ξ .

Equations (3.3) and (3.7) show that ξ = x̄ (1 − σ lnY ), where

Y ≡ y

δ
, (3.11)

so that (3.9) becomes

w̄0 = g (τ̄ , z − x̄ w̄0) (3.12)

in the ‘small’ sublayer Y =O(1) of the much thicker region η = O(1).

4. The boundary-layer expansion
4.1. The quasi-steady linear region

Viscous effects must come into play when y becomes sufficiently small. The resulting
boundary layer will initially be two-dimensional with the spanwise variations
producing only a linear perturbation of the Blasius flow when 1 � x � σ/ā ε. In
which case, it follows from (3.6) and (3.9) that the relevant solution is given by (Crow
1966)

u = F ′(ηB) +
ε

2σ
ā g′(τ̄ , z)xηBF ′′(ηB) + · · · , (4.1)

v =
1√

2Rλx

{
ηBF ′(ηB) − F (ηB)

+
εā x

2σ

[
η2

BF ′′(ηB) − 3ηBF ′(ηB) − F (ηB)
]

g′(τ̄ , z) + · · ·
}

, (4.2)

w =
ε

σ
āg′(τ̄ , z)F ′(ηB) + · · · , (4.3)

where the primes denote differentiation with respect to z or ηB as appropriate,
ηB = O(1) denotes the Blasius variable

ηB = y

√
Rλ

2x
, (4.4)

F (ηB) satisfies the Blasius equation

F ′′′ + FF ′′ = 0, (4.5)

F (0) = F ′(0) = 0, (4.6)

F → ηB − β, ηB → ∞, (4.7)

and β ∼= 1.217 · · ·.
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4.2. The fully unsteady nonlinear region

The expansions (4.1) to (4.3) clearly break down when x̄ ≡ εāx/σ = O (1) and
a new expansion must be obtained for this region. The distinguished scaling
corresponds to identifying the length scale λδ introduced in § 3 with the boundary-
layer thickness

√
2x/Rλ. We, therefore, suppose that Y = O (1), introduce the long

streamwise length scale

L∗ =
λ

εā ln (1/δ)
, (4.8)

and set

λδ = L∗/R1/2, (4.9)

where

R ≡ U∞L∗

v
(4.10)

is the global Reynolds number based on L∗. It then follows that

δ = (Rλε ā ln[1/δ])−1/2, (4.11)

which, in view of (2.5), is consistent with our assumption (3.1) that δ � 1. We only
consider the region where |x̄ − ξs |  σ in this paper (ξs is defined below (3.10)).

We expect the streamwise velocity

u = U (t̄ , x̄, Y, z) (4.12)

to be O(1) in this part of the flow, and in order to satisfy continuity we put

v = −ε āδ(ln δ)V, (4.13)

w = −ε ā(ln δ)W, (4.14)

where V and W are, of course, assumed to remain O(1) as ε → 0. Equations (3.3), (3.4)
and (3.18) suggest that

p = ε2d(τ̄ , z) + O(ε āδ ln δ)2 (4.15)

in this region.
Substituting these scalings into the Navier–Stokes equations yields the unsteady

three-dimensional zero-pressure-gradient boundary-layer equations

∂U

∂t̄
+ U

∂U

∂x̄
+ V

∂U

∂Y
+ W

∂U

∂z
=

∂2U

∂Y 2
, (4.16)

∂W

∂t̄
+ U

∂W

∂x̄
+ V

∂W

∂Y
+ W

∂W

∂z
=

∂2W

∂Y 2
, (4.17)

∂U

∂x̄
+

∂V

∂Y
+

∂W

∂z
= 0, (4.18)

and U must clearly go to unity as Y → ∞ in order to match with (3.7) of GLC.
The boundary condition for W is a little more subtle. The known properties of the
boundary-layer solutions suggest that the normal derivatives should become small as
Y → ∞. Equation (4.17) therefore becomes

∂W

∂t̄
+

∂W

∂x̄
+ W

∂W

∂z
= 0, (4.19)

whose solution is given by

W = G(t̄ − x̄, z − x̄W ). (4.20)
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This will clearly agree with (3.9) and (4.14), and will therefore match with (3.3) and
(3.6) if we take

G = g, (4.21)

where g is given by (3.10). It is worth noting that the continuity equation (4.18)
automatically ensures that (4.13) will match with (3.5) and (3.8).

The appropriate boundary conditions for (4.16)–(4.18) are therefore

U → 1, W → g(t̄ − x̄, z − x̄W ) as Y → ∞, (4.22)

U = V = W = 0 at Y = 0, (4.23)

and since it follows from (2.1), (3.1), (3.11), (4.4) and (4.11) that

ηB = Y/
√

2x̄, (4.24)

matching with the upstream solution (4.1)–(4.3) requires that

U → F ′(ηB) + 1
2
g′(τ̄ , z)x̄ηBF ′′(ηB), (4.25)

V → 1√
2x̄

[ηBF ′(ηB) − F (ηB)] +

√
2x̄

4

[
η2

BF ′′(ηB) − 3ηBF ′(ηB) − F (ηB)
]
g′(τ̄ , z)

(4.26)

and

W → g′(τ̄ , z)F ′(ηB) (4.27)

as x̄ → 0. The solution to this problem should become singular at the inviscid singular
point ξ s .

5. Numerical solution of the boundary-layer problem
The full unsteady problem (4.16)–(4.18) and (4.22)–(4.27) depends on the upstream

distortion only through the function g(τ̄ , z) defined by (2.18), (2.32) and (3.10). The
steady-state solution to this problem is expected to be independent of initial conditions
when the upstream forcing is periodic (as it is in the present computations). However,
the numerical procedure is most conveniently implemented by solving an initial-value
problem and running the calculation until the steady state is reached. The initial
condition was taken to be the steady flow obtained by setting t̄ =0, or equivalently
τ̄ = −x̄, in the upstream distortion function g(τ̄ , z). This latter quantity can then be
set equal to zero in the upstream boundary condition (4.25)–(4.27) for the upstream
distortion (7.1) used in the calculations, since g(0, z) = 0 in that case. The resulting
steady flow was calculated by solving the boundary-layer problem as formulated in
GLC with t̄ set equal to zero in the transverse boundary condition (4.22). More
specifically, the solution was obtained by using the Keller box method (Keller &
Cebeci 1972; Cebeci & Smith 1974; Cebeci, Khattab & Stewartson 1981), which is
a finite-difference procedure that advances the solution in x̄ and z from given initial
conditions and an independent symmetry-plane calculation. The marching in z can
proceed from the symmetry plane at z = −π to the one at z = 0 once the distortion
function g(−x̄, z) is selected. The standard box (Cebeci et al. 1981) was found to be
adequate in the absence of any spanwise flow reversal.

The full three-dimensional unsteady boundary-layer problem (4.16)–(4.18) and
(4.22)–(4.27) was rewritten in terms of the stretched Blasius variable (4.24) and
the new dependent variable

e ≡ −V
√

2x̄ + ηBU, (5.1)
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to obtain

∂U

∂t̄
+ U

∂U

∂x̄
+ W

∂U

∂z
=

1

2x̄

(
∂2U

∂η2
B

+ e
∂U

∂ηB

)
, (5.2)

∂W

∂t̄
+ U

∂W

∂x̄
+ W

∂W

∂z
=

1

2x̄

(
∂2W

∂η2
B

+ e
∂W

∂ηB

)
, (5.3)

∂U

∂x̄
+

∂W

∂z
=

1

2x̄

(
∂e

∂ηB

− U

)
, (5.4)

where

U → 1, W → g(t̄ − x̄, z − x̄W ) as ηB → ∞, (5.5)

U = e = W = 0 at ηB = 0, (5.6)

and

U → F ′(ηB) + 1
2
g′(τ̄ , z)x̄ηBF ′′(ηB) , (5.7)

e → F (ηB) + x̃
(
η2

BF ′′(ηB) − 3
2
ηBF ′(ηB) − 1

2
F (ηB)

)
g′(τ̄ , z), (5.8)

W → g′(τ̄ , z)F ′(ηB), (5.9)

as x̄ → 0, with periodic boundary conditions being imposed in the spanwise direction.
This transformed problem was solved using the dual-time-stepping technique

(Jameson 1991; Gaitonde 1998), which involves modifying the governing equations to
include terms that are unsteady in a fictitious pseudotime. Solutions of the modified
equations that are steady in pseudotime are identical to the instantaneous unsteady
solutions of the original equations (5.2)–(5.9) in physical time. The pseudotime
marching was carried out using a four-stage Runge–Kutta scheme (Jameson,
Schmidt & Turkel 1981).

The domain extended from 0 to 0.8 in the streamwise direction, from 0 to 8
in the cross-stream direction and from −π/2 to 3π/2 in the spanwise direction to
include two singularity locations. A three-dimensional Cartesian grid was built with
24, 80 and 80 points along the x̄-, ηB- and z-directions, respectively. The number of
grid points was set by using a grid-convergence analysis. Several grid configurations
(corresponding to different numbers of grid points) were tested until an accurate result
was obtained. The accuracy was measured by the difference between the flow variable
averages (over the entire grid) calculated on two different grid configurations. For
example, the average U 1

i of the dependent variable U over all grid points i = 1, NT1
, in

configuration 1 with the number of grid points equal to NT1
, was calculated from

〈U 1〉 =
1

NT1

NT1∑
i=1

U 1
i . (5.10)

The maximum acceptable value of the difference,

ε∗ ≡ |〈U 2〉 − 〈U 1|, (5.11)

between the numerical results for the grid configurations 1 and 2 was set equal to
10−4. The analysis was repeated for every dependent variable.

The grid was stretched along the ηB-direction, near the wall, and along the
z-direction, in the vicinity of the inviscid singularities. All the spatial derivatives in
(5.2)–(5.4) were discretized at the new time level, n + 1, to obtain an unconditionally
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stable scheme. The derivatives with respect to ηB were replaced with second-order
centred finite differences and (unexpected) spurious numerical waves produced by
(5.4), which does not include second derivatives, were eliminated by the inclusion
of filtering terms (Kennedy & Carpenter 1994). The x derivatives and the time
derivatives were discretized using backward finite-difference schemes of second order,
except at the first point–where, first-order backward schemes were used. The spanwise
convection terms, i.e. W∂U/∂z and W∂W/∂z, were replaced with a second-order
upwind approximation in order to deal with local region of reverse cross-flow that
can occur in the boundary layer.

Equations (5.2)–(5.4) can then be written as

R(Qn+1, Qn) = 0, (5.12)

where the operator R is called unsteady residual, and Q =[U W e]T is the vector of
dependent variables. The dual-time-stepping technique replaces this by the equation

∂Qn+1

∂ t̂
+ R(Qn+1, Qn) = 0, (5.13)

which is integrated until the derivative with respect to t̂ goes to zero using the four-
stage Runge–Kutta marching technique (Jameson et al. 1981) in pseudotime t̂ . The
resulting Q vector is the unsteady solution of (5.2)–(5.4) at the n + 1 physical time
level.

A discrete l2-norm, which approximates the integral L2-norm, was used to evaluate
the error involved in the numerical integration of (5.13). More specifically, the l2-norm
of the vector containing the elements

εU
i = {Uν+1

i − Uν
i , i = 1, NT } (5.14)

where NT is the total number of grid points and ν indexes the dual-time level, is given
by

‖εU ‖2 =

√√√√ NT∑
i=1

|Uν+1
i − Uν

i |2. (5.15)

Equation (5.13) was deemed to be converged to (5.12) when all of the l2-norms ‖εU ‖2,
‖εW ‖2 and ‖εe‖2 corresponding to the dependent variables U , W and e, respectively,
were smaller than 10−6.

6. Wave-packet solution
6.1. Construction of solution

We begin by supposing that a two-dimensional free-stream disturbance (such as a
blob of turbulence), which varies on the ‘fast’ length and time scales

X, Y, Z, T ≡ x/δ, y/δ, z/δ, t/δ, (6.1)

inserts itself into the boundary layer in some reasonably small neighbourhood of
X0, Z0,T0. The velocity U (̄t, x̄, Y, z) can be considered to be a locally parallel two-
dimensional quasi-steady mean flow, since it changes much more rapidly with respect
to the unscaled variable y than it does relative to the unscaled variables x, z, t in the
limit as ε/σ → 0 (Cowley 1985; Wu 1992; Wu et al. 1993). While the wave packets
are clearly three-dimensional in the NFL simulation, we shall, for simplicity, consider
only the two-dimensional case. This amounts to assuming that the spanwise length
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scale of the disturbance is much larger than its streamwise length scale, but much
smaller than the spanwise length scale of the mean flow, which is possible because
the spanwise scale of the base flow is large compared to the streamwise scale of the
disturbance.

The straightforward local solution to the incompressible linearized Navier–Stokes
equations (about the velocity {U, V, W}) that varies in space and time on the fast
scales X, Y, T , therefore, possess an expansion of the form

v(X, Y, T ; ε/σ ) = v0(X, Y, T ) + (ε δ ā/σ )v1(X, Y, T ) + · · · , (6.2)

with the lowest-order term being given by the initial-value-problem solution

v0(X, Y, T ) =

∫ ∞+ic

−∞+ic

∫ ∞

−∞
A0(ω, k)

ṽ0(Y, ω, k)

D(ω, k)
ei[k(X−X0)−ω(T −T0)] dω dk, (6.3)

where A0(ω, k) is related to the Fourier–Laplace transform of the imposed distortion,
ṽ0(Y, ω, k) satisfies the reduced Rayleigh equation corresponding to the nominally two-
dimensional mean flow U (t̄ , x̄, Y, z) and D(ω, k) = 0 is the corresponding dispersion
relation. The k-integration is over the real axis and the ω-integration is over the
Bramowitz contour, which can be continuously deformed onto the real axis when this
local flow field is convectively unstable. The k-integration must then be deformed to
lie below all the poles of the integrand that cross into the lower half-plane during
this process. These poles correspond to the roots of the Rayleigh equation dispersion
relation D(ω, k) = 0 and the main contribution to the integrals in (6.3) will come from
their residues when X − X0 becomes large. v0(X, Y, T ) is then given by

v0(X, Y, T ) =

∫ ∞

−∞
A(ω̃)v̄0(Y, ω̃)ei[k(ω̃)(X−X0)−ω̃(T −T0)] dω̃, (6.4)

where k(ω̃) denotes a root of the local dispersion relation and v̄0(Y, ω̃) denotes the
corresponding Rayleigh equation eigensolution for the nominally two-dimensional
mean flow U (t̄ , x̄, Y, z). However, it is easy to show by direct substitution that
v1(X, Y, T ) grows linearly with X, T and, therefore, becomes O(v0(x, Y, t)) when
X, T = O(σ/āδε), which means that the expansion breaks down when t̄ , x̄ = O(1).

To obtain a global solution that is uniformly valid when the scaled variables x̄ and
t̄ are O(1) and reduces to the local solution (6.2) when the fast variables X and T

are O(1), we adopt the so-called slowly varying or WKBJ approach (Nayfeh 1973,
p. 315 & ff) and substitute

v(X, Y, T ; ε̄) =

∫ ∞

−∞
v̄(Y : x̄,t̄; ω̃: ε̄)ei Θ(ω̃,x̄,t̄) /ε̄dω̃, (6.5)

where

ε̄ ≡ εδ ā/σ, (6.6)

and v̄(Y : x̄,t̄; ω̃: ε̄) expands as

v̄(Y : x̄,t̄; ω̃ : ε̄) = A(x̄, t̄;ω̃) v̄0 (Y : x̄,t̄; ω̃) + ε̄ v̄1(Y : x̄,t̄; ω̃) + · · · , (6.7)

into the appropriately scaled linearized Navier–Stokes equations. v̄0(Y : x̄, t̄;ω̃) will
then satisfy the same reduced Rayleigh’s equation as before if we put

k(ω0, x̄, t̄) ≡ ∂Θ(ω0, x̄, t̄)

∂x̄
, (6.8)

ω(ω0, x̄, t̄) ≡ −∂Θ(ω0, x̄, t̄)

∂t̄
. (6.9)
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The ‘slowly varying amplitude function’ A(x̄,̄t; ω̃) can be chosen to ensure solvability
in the boundary-value problem for v̄1(Y : x̄,t̄;ω̃), which means that the first-order
term will no longer become large compared to the zeroth-order term when x̄, t̄ =O(1).
(Nayfeh 1973, p. 315 & ff). We need not calculate this quantity here.

The zeroth-order dispersion relation D(ω, k, x̄,t̄) = 0 is determined by the same
eigenvalue problem as the original local solution (6.2) and it, therefore, follows from
(6.8) and (6.9) that the phase factor Θ satisfies the first-order partial differential
equation

D

(
−∂Θ

∂t̄
,

∂Θ

∂x̄
, x̄, t̄

)
= 0, (6.10)

whose complete integral can be written as (Garabedian 1964, p. 33)

Θ = ϑ(x̄, t̄; ω0, b0), (6.11)

where ω0, b0 are two independent parameters. The general solution can be obtained
by eliminating ω0 between

Θ = ϑ(x̄, t̄; ω0, b0(ω0)) (6.12)

and

ϑω0
(x̄, t̄; ω0, b0(ω0)) + ϑb0

(x̄, t̄; ω0, b0(ω0))
db0(ω0)

dω0

= 0, (6.13)

where b0(ω0) is a given function and subscripts denote partial differentiation with
respect to indicated arguments. Note that (6.13) determines ω0 as a function of x̄, t̄ .
Equation (6.5) now becomes

v(X, Y, T ; ε̄) =

∫ ∞

−∞
A(x̄, t̄; ω̃)v̄0(Y : x̄ , t̄; ω̃)eiϑ(x̄, t̄;ω̃, b0(ω̃))/ε̄dω̃ (6.14)

to the lowest order of approximation. Since ϑ(x̄, t̄; ω̃, b0(ω̃))/̄ε will be large when
x̄, t̄ = O(1), we can use the method of steepest descent (Carrier, Krook & Pearson
1966, p. 272) to obtain

v(X, Y, T ; ε̄) ∼ A(x̄, t̄)

[
2πε̄

|d2ϑ/dω̃2|ω̃=ω0

]1/2

e
i
ε̄
ϑ(x̄,̄t;ω0, b0(ω0))±i π/4[v̄0(Y : x̄ , t̄; ω0) + O(ε̄)],

(6.15)
where ± corresponds to d2ϑ/dω̃2 > / < 0 and ω0(x̄, t̄) is determined from the solution
of

ϑω0
(x̄, t̄; ω0, b0(ω0)) + ϑb0

(x̄, t̄; ω0, b0(ω0))
db0(ω0)

dω0

= 0, (6.16)

which is formally the same as (6.13) and, therefore, implies that ϑ(x̄, t̄; ω0, b0(ω0)) is
a general solution of the dispersion equation (6.10), which means that (6.15) is also a
local solution to the original Rayleigh equation.

6.2. Initial-value problem for dispersion equation solution ϑ(x̄, t̄; ω̃, b0(ω̃))

In order to insure that the global solution (6.14) reduces to the local solution (6.4) at
x̄, t̄ = x̄0, t̄0 ≡ ε̄x0, ε̄t0, it is necessary that

1

ε̄

[
ϑ(0, 0; ω̃, b0(ω̃)) +

(
∂ϑ

∂t̄

)
x̄0,t̄0

(t̄ − t̄0) +

(
∂ϑ

∂x̄

)
x̄0,t̄0

(x̄ − x̄0)

]

→ k (ω̃) (x − x0) − ω̃ (t − t0) as x̄, t̄ → x̄0, t̄0, (6.17)
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which implies that

ϑ(x̄, t̄; ω̃, b0(ω̃)) = 0,
∂ϑ

∂t̄
= −ω̃ at x̄, t̄ = x̄0, t̄0. (6.18)

Alternatively, the dispersion relation D(ω, k, x̄, t̄) = 0 can be solved for k to obtain
k = K (ω, x̄, t̄) ,which can be used to replace the second condition in (6.18) by

∂ϑ

∂x̄
= K(ω̃, x̄, t̄ ) at x̄, t̄ = x̄0, t̄0. (6.19)

The solution to the initial-value problem (6.10), (6.12) and (6.18) can then be found
by solving

D

(
−∂ϑ

∂t̄
,

∂ϑ

∂ x̄
, x̄, t̄

)
= 0 for x̄1 < x̄ < x̄2, t̄ > t̄0, (6.20)

subject to the initial condition

ϑ = ϑ0(x̄) ≡ ϑ(x̄, t̄0) for t̄ = t̄0, (6.21)

where ϑ0(x̄) satisfies the ordinary differential equation

dϑ0

dx̄
= K(ω̃, x̄, t̄0), for x̄1 < x̄ < x̄2, (6.22)

subject to the initial condition

ϑ0(x̄) = 0 at x̄ = x̄0. (6.23)

The steepest descent point ω0(x̄, t̄ ) will in general be complex, with the phase
factor ϑ(x̄, t̄; ω0, b0(ω0)) being an analytic continuation of ϑ(x̄, t̄; ω̃, b0(ω̃)) into the
complex ω̃-plane along the steepest descent path. This implies that ϑ(x̄, t̄; ω̃, b0(ω̃))
can be found by analytically continuing the initial-value problem (6.20)–(6.23) into
the complex plane. In other words, ϑ(x̄, t̄; ω0, b0(ω0)) can be found by solving the
initial-value problem (6.20)–(6.23) for complex ω̃ = ω0(x̄, t̄).

6.3. Numerical solution of dispersion equation

As noted in § 6.1, the numerical computation of the wave-packet phase factor
ϑ(x̄, t̄; ω0(x̄, t̄), b0(ω0(x̄, t̄))) is based on the numerical dispersion relation (or
NDR) obtained from the local Rayleigh equation eigensolutions. The NDR can
be calculated either by finding the complex frequency ω =Ω (k, x̄, t̄) as a function of
complex wavenumber (corresponding to temporal stability analysis) or by finding the
wavenumber k = K(ω, x̄, t̄), as a function of complex frequency (corresponding to
spatial stability analysis) – both of which lead to identical conclusions about the linear
instability of the local flow, but their numerical implementation can be very different
(Suslov 2006). The first leads to a linear eigenvalue problem for the frequency which
we solved either as a matrix eigenvalue problem or by using a shooting method.
The second leads to a nonlinear eigenvalue problem that we could only solve by
using a shooting method – which usually requires a reasonably accurate initial guess
in order to converge. The temporal stability analysis was, therefore, preferred when
investigating the convective/absolute instability boundary. This was done by using
Kupfer’s cusp map method (Kupfer, Bers & Ram 1987), which involves mapping a
section of the k-plane (for example, lines parallel to the real k-axis situated in the lower
half-plane with progressively decreasing imaginary part) into the ω-plane (Agarwal &
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Morris 2006). The NDR was calculated at discrete points within the spatio-temporal
domain [x̄1, x̄2] × [t̄0, t̄]. Instability occurs when any part of the ω(k) map lies in the
upper-half ω-plane, which turned out to be the case whenever the streamwise velocity
profiles were inflectional. No cusp point was encountered anywhere in the upper-half
ω-plane – which means that the instability was always convective.

The monochromatic wave phase factor ϑ(x̄, t̄; ω̃, b0(ω̃)) was found by solving
(6.20) rewritten as

∂ϑ0

∂t̄
= −Ω

(
∂ϑ0

∂x̄
, x̄, t̄

)
(6.24)

which was then discretized as

ϑ0(x̄, t̄ + Δt̄ ) = ϑ0(x̄, t̄) − Δt̄ · Ω
(

ϑ0(x̄ + Δx̄) − ϑ0(x̄)

Δx̄
, x̄, t̄

)
, (6.25)

subject to the initial condition (6.21), where ϑ0 is determined by the ordinary
differential equation (6.22) which was discretized as

ϑ0(x̄ + Δx̄) = ϑ0(x̄) + Δx̄ · K(ω̃, x̄, t̄0) for x̄1 < x̄ < x̄2. (6.26)

The solution of this problem requires that the NDR be determined both as
ω =Ω (k, x̄, t̄) and as k =K(ω, x̄, t̄). These relations were calculated at discrete
points in the [x̄1, x̄2] × [t̄0, t̄] domain and interpolated by putting splines through the
data to transform the NDRs into continuous smooth bivariate functions. The local
wave-packet frequency ω0(x̄, t̄) and phase factor ϑ(x̄, t̄; ω0(x̄, t̄), b0(ω0(x̄, t̄))) were
then found by iterating on ω̃ until a saddle point of ϑ(x̄, t̄; ω̃, b0(ω̃)) was found at
the point x̄, t̄ . The initial guess for the first x̄, t̄ step was obtained from the local
(uniform medium) stationary phase condition

∂K(ω̃, x̄0, t̄0)

∂ω̃
=

t̄ − t̄0

x̄ − x̄0

, (6.27)

and the local wave packet frequency ω0(x̄, t̄) from the previous step was used as the
initial guess for each succeeding step.

As implied by the discrete forms (6.25) and (6.26), equations (6.22) and (6.24) were
both solved using first-order finite-difference schemes on a relatively coarse grid owing
to the large amount of data to be stored. We quantified the error introduced by the
numerical method used to solve the equations (6.25) and (6.26) by varying of the
spatial step size (or the number of grid points) and found no significant variation in
the calculated phase factor. The error analysis described in § 5 (see (5.10) and (5.11))
was repeated here with an error bound of ε∗ ∼= 5 × 10−3.

7. Results and discussion
The vorticity of the imposed upstream distortion (2.2) is nearly perpendicular to

the plate. Its vortex lines are convected downstream by the predominantly inviscid
flow and become elongated as they pass over the plate – leading to infinite velocities
and infinitesimal length scales which must be eliminated by viscous effects. As in
GLC, this vortex stretching produces the usual logarithmic singularity in the initial
inviscid solution (Hunt & Carruthers 1990) and a much more interesting nonlinear
singularity – which generates small spanwise length scales in the approaching
boundary layer – further downsteam in the flow. The focus of this paper is on this latter
three-dimensional unsteady boundary-layer region, in which the small spanwise length
scales give rise to elongated streamwise streaks.
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As noted in § 5, the boundary-layer flow depends on the imposed upstream distortion
only through the function g (τ̄ , z) defined by (2.18), (2.32) and (3.10). For the sake of
simplicity, we focus on upstream distortions that are periodic in both the scaled time
t̄ and the spanwise coordinate z. The numerical solutions described in § 5 are based
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on solving an initial-value problem with the initial condition being the steady flow
produced by the steady upstream distortion g (−x̄, z). We also solved the steady-flow
problem corresponding to the upstream distortion g (0, z) for many different choices
of this function and, as in GLC, found that the boundary-layer velocity profiles
were always non-inflectional everywhere upstream of the downstream singularity –
which means that they can only support slowly growing viscous instabilities. However,
the unsteady calculations show that the instantaneous velocity profiles can become
highly inflectional when the upstream flow is allowed to oscillate on the slow time
scale t̄ = εāt/σ . The local profiles (at any given point in the boundary layer) are
only inflectional during part of the oscillation cycle, but, during that time, they can
support rapidly growing inviscid (i.e. Rayleigh) instabilities, which evolve on much
faster time and (streamwise) space scales than the slow time and (streamwise) space
scales t̄ and x̄ on which the boundary layer develops. So, as first noted by Cowley
(1985) and subsequently by Wu (1992) and Wu, Lee & Cowley (1993) (see also
Wu & Choudhari, 2003), these disturbances can rapidly grow to nonlinear amplitudes
and break down into turbulent spots before the cycle reverses and the inflection
points disappear. Wu & Choudhari (2003) considered long-wavelength disturbances,
which grow more slowly than those considered in this paper; but these disturbances
can begin to grow even when the induced mean flow changes are very small,
i.e. o (1).

Since the boundary layer behaves like a locally parallel flow, the induced
disturbances are locally determined by the Rayleigh equation, but evolve like slowly
modulated wave packets on the longer length and time scales of the unsteady
boundary-layer flow. The relevant wave-packet solution can be constructed from the
local Rayleigh equation dispersion relation, as was done in § 6.

To fix ideas, all computations were carried out with the simple upstream distortion

u∞ = −[sin k̄(t̄ − x̄)]cos z. (7.1)

More complicated distortions will obviously produce more complicated results.
Equations (3.10), (5.1)–(5.9) and (7.1) show that the unsteady boundary flow will
then depend on the single parameter k̄, which, for definiteness, we now set equal to 5.
Figure 1(a) is a plot of the contours of constant streamwise velocity in a cross-flow
plane at the typical streamwise location of x̄ = 0.7 for different values of the scaled
time variable t̄ . They clearly show that there is a thickening and thinning of the
boundary layer that gradually moves back and forth across the flow. It was implicitly
noted in § 4.1 that the undisturbed boundary-layer solution would correspond to the
Blasius result

U ≡ UB = F ′(ηB), (7.2)

where ηB is the Blasius variable (4.4) and F ′(ηB) is the Blasius function determined
by (4.5) to (4.7). So contours of constant U − UB characterize the streamwise velocity
excess/deficit relative to the undisturbed flow. Negative U −UB regions correspond to
the low-speed streaks that are frequently observed in experiments. The contours are
plotted in figure 1(b) for the same conditions as the U contours. They show, among
other things, that the streaks move across the boundary layer and that any given
point in the boundary layer will lie on a streak during part of the oscillation cycle
and in a relatively undisturbed region during the rest of the cycle. This can be seen
more clearly from the U − UB profiles ploted in figure 2 for the same time intervals.
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Figure 2. Difference between the instantaneous streamwise velocity and Blasius velocity at
(a) z = 0 and (b) z = π for different times (corresponding to those in figure 1), as a function of
cross-stream Blasius variable, ηB .

Figure 3 is a plot of the corresponding U ′′ ≡ ∂2U/∂η2
B profiles. They clearly show

that, although the most highly inflectional regions tend to lie on the low-speed streaks,
the boundary layer can remain inflectional even after the streaks have moved to a new
location in the layer – which means that disturbances can continue to grow even after
the low-speed streaks have passed. While inflectional profiles do not automatically
guarantee instability, it appears that they do in the present case. Some typical temporal
growth rate curves are shown at a few selected time intervals in figure 4. They suggest
that the most highly inflectional profiles produce the most rapid growth. The present
results show that the U −UB profiles and contours depend on the upstream distortion
amplitude ε and leading-edge bluntness parameter ā only through the scaled variables
x̄ and t̄ , which means that these quantities can affect these profiles and contours only
by changing the time and streamwise location at which they occur. This may, at least
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(b) z = π, as a function of cross-stream Blasius variable, ηB for different times (corresponding
to those in figure 1).

in part, explain why Kendall (1991) and Watmuff (1997) were unable to detect any
leading-edge effect on the Klebanoff modes.

The most important results are the two-dimensional wave-packet solutions
developed in § 6. Their phase surfaces ϑ(x̄, t̄; ω0(x̄, t̄), b0(ω0(x̄, t̄))) move along the
trajectories x̄wp = x̄wp(t̄), described in Appendix B and, while the wave packets in the
NFL simulation are clearly three-dimensional, we feel that the relevant physics can
best be illustrated by considering the much simpler two-dimensional case. Figures 5(a)
and 6(a) show the growth, −Imϑ , of two typical wave packets along these trajectories.
The actual wave-packet trajectories x̄wp = x̄wp(t̄), are shown in figures 5(b) and 6(b).
The slopes dx̄wp/dt̄ of these curves are the wave-packet phase velocities normalized
by the upstream velocity U∞. A typical value for these quantities is ≈0.2, which –
considering the two-dimensional nature of the present result – is remarkably close to
the value of 0.5 given in NFL.
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The corresponding U − UB and U ′′ profiles are shown at selected points along
these trajectories in figures 5(c, d) and 6(c, d). Figures 5(e) and 6(e) show contours
of constant streamwise velocity in the cross-flow planes at various points along the
trajectories. Although the phenomenon under consideration is expected to occur at
fairly high free-steam turbulence intensities, O(0.05) or so, the figures show that the
overall wave-packet growth exp (Imϑ/ε̄), which depends on the additional parameter
ε̄ ≡ ε āδ/σ =

√
ε āδ/Rλσ (see (4.11)), will be rather small unless ε̄ is also relatively

small, which it is in the NFL simulation since δ ∼ 0.06, ε δ is then about 3 × 10−3 and
the maximum value of Imϑ/ε̄ is, therefore, about 30.

Notice that exp (Imϑ/ε̄) will be large when the product ε ā of the upstream
distortion amplitude and the leading-edge bluntness is small. The wave packets
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are, therefore, likely to reach large amplitudes and become nonlinear while the local
velocity profiles are still streak-like for thin plates and/or low free-stream turbulence
levels. They are unlikely to reach such amplitudes until the low-speed streaks have
moved to a new location when the plate is sufficiently thick and/or the free-stream
turbulence levels are sufficiently high. This could explain why the spot precursor
wave packet appear to grow on the turbulent streaks in the NFL simulations when
either or both of these quantities are small and reach detectable amplitudes only
after the streak has moved to a new location and, therefore, appear to grow on the
relatively undisturbed region between the streaks when they are large. Figures 5(f )
and 6(f ) show the wave-packet mode shapes at selected points along the wave-packet
trajectory. These results indicate that the wave packet will be largely confined to the
lower part of the boundary layer by the time it reaches its maximum amplitude –
which is again consistent with the NFL observations.

Although the dimensionality of the wave packet is expected to have only a
quantitative effect on the initial linear stage, it is likely to have an important qualitative
effect in the final nonlinear stage, as suggested by the work of Wu et al. (1993) who
used a similar framework to analyse the disturbance growth in oscillating Stokes
layers. By considering a pair of interacting oblique modes, they showed that strong
nonlinear critical-layer effects eventually come into play at very small amplitudes
for such three-dimensional modes and ultimately cause the disturbance to exhibit
explosive growth – which they associate with the breakdown into turbulence. Wu &
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Choudhari (2003) considered the nonlinear evolution of secondary instabilities in a
similar fashion.
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Appendix A
Re-expanding (2.21) and (2.14) shows that

∇2φ̃0 → − ∂

∂y
u∞(x̄ − t̄ , x⊥)Δ′

+(y)

− ε

σ
ā

[
∂

∂x̄
u∞(x̄ − t̄ , x⊥)Δ′

+(y)Δ+(y) + v̄∞

(
x̄ − t̄ +

ε

σ
Δ+, x⊥

)]
+ · · · as x → ∞

(A 1)
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Figure 5. Two-dimensional wave-packet solution initiated at z = 0, t̄0 = 0.63, x̄0 = 0.55.
(a) Total wave-packet growth. (b) Wave-packet trajectory. (c) Second derivative of the
streamwise velocity with respect to ηB , at z =0 as a function of cross-stream Blasius variable,
ηB for different times corresponding to those in (a). (d) Difference between the instantaneous
streamwise velocity and Blasius velocity at z = 0 for different times (corresponding to those in
(a)), as a function of cross-stream Blasius variable, ηB . (e) Contour of the difference between
the disturbed streamwise velocity and the Blasius streamwise velocity for (i) t̄ = 0.63, (ii) 0.81,
(iii) 0.99, (iv) 1.17, (v) 1.35, (vi) 1.53, corresponding to those in (a). (f ) Wave-packet mode
shapes, (i) normal velocity fluctuation, (ii) streamwise velocity fluctuation at various points
along the trajectory, corresponding to those indicated in (b).

and

ũI → î u∞(x̄ − t̄ , x⊥) + ĵ u∞(x̄ − t̄ , x⊥)Δ′
+(y)

+
ε

σ
ā

[
î

∂

∂x̄
u∞(x̄ − t̄ , x⊥)Δ+ + ĵ v̄∞(x̄ − t̄ , x⊥) + k̂ w̄∞(x̄ − t̄ , x⊥)

]
+ · · · (A 2)

as x → ∞, where î and ĵ denote unit vectors in the x- and y-directions. It now follows
from (2.22) that

∂

∂y

(
φ̃ +

ε

σ
ā φ̃1

)
=

∂φ̃0

∂y
+ u∞ (x̄ − t̄ , x⊥) Δ′

+(y), (A 3)

∂2

∂y2

(
φ̃ +

ε

σ
ā φ̃1

)
=

∂2φ̃0

∂y2
+

∂

∂y
u∞ (x̄ − t̄ , x⊥) Δ′

+(y), (A 4)

which, in view of (A 1), shows that

∇2
(
φ̃ +

ε

σ
ā φ̃1

)
→

(
∂2

∂z2
+

∂2

∂x2

)∫
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) dy

− ε

σ
ā

[
∂

∂x̄
u∞ (x̄ − t̄ , x⊥) Δ′

+ (y) Δ+ (y) + v̄∞

(
x̄ − t̄ +

ε

σ
Δ+, x⊥

)]
+ · · ·
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→ ∂2

∂z2

∫
u∞ (x̄ − t̄ , x⊥) Δ′

+(y) dy

− ε

σ
ā

[
∂

∂x̄
u∞(x̄ − t̄ , x⊥)Δ′

+(y)Δ+ (y) + v̄∞

(
x̄ − t̄ +

ε

σ
āΔ+, x⊥

)]
+ · · · (A 5)

On the other hand, (2.10) (2.22) and (A 2) imply that

ũ0 → î u∞(x̄ − t̄ , x⊥) + ∇
(
φ̃ +

ε

σ
āφ̃1

)
− k̂

∫
∂

∂z
u∞ (x̄ − t̄ , x⊥) Δ′

+(y) dy

+
ε

σ
ā

[
î

∂

∂x̄
(u∞(x̄ − t̄ , x⊥)Δ+ −
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+(y) dy)

+ ĵ v̄∞ (x̄ − t̄ , x⊥) + k̂ w̄∞(x̄ − t̄ , x⊥)
]

+ · · · .

= î u∞ (x̄ − t̄ , x⊥) + ∇
(
φ̃ +

ε

σ
āφ̃1

)
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∫
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∂y
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]
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(A 6)
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Figure 6(e). For caption see page 123.

as x → ∞. It now follows from (2.22) and (2.23) that φ̃ is independent of x and that
(2.24) and (2.25) apply.

Appendix B
Since the wave packets are only slowly modulated and have relatively modest

growth rates, they will appear to propagate along the curves, say xwp = x̄wp(t̄), in the
(x̄, t̄ )-plane on which the real part of their phase remains constant and are, therefore
determined by

Re
dϑ

dt̄
=

(
Re

∂ϑ

∂x̄

)
dx̄wp

dt̄
+ Re

∂ϑ

∂t̄
= 0,

or
dx̄wp

dt̄
= H (x̄wp, t̄ ), (B 1)

where

H (x̄, t̄) ≡ − Re(∂ϑ(x̄, t̄)/∂t̄)

Re(∂ϑ(x̄, t̄)/∂x̄)
,
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Figure 6. Two-dimensional wave-packet solution initiated at z = 0, t̄0 = 0.72, x̄0 = 0.55.
(a) Total wave-packet growth. (b) Wave-packet trajectory. (c) Second derivative of the
streamwise velocity with respect to ηB , at z = 0 as a function of cross-stream Blasius variable,
ηB for different times corresponding to those in (a). (d) Difference between the instantaneous
streamwise velocity and Blasius velocity at z = 0 for different times corresponding to those in
(a) as a function of cross-stream Blasius variable, ηB . (e) Contours of the difference between
the disturbed streamwise velocity and the Blasius streamwise velocity for (i) t̄ = 0.72, (ii) 0.9,
(iii) 1.08, (iv) 1.26, (v) 1.44, (vi) 1.62, corresponding to those in (a). (f ) Wave-packet mode
shapes, (i) normal velocity fluctuation, (ii) streamwise velocity fluctuation at various points
along the trajectory, corresponding to those indicated in (b).

The wave-packet trajectories in the (x̄, t̄)-plane can therefore be found by solving the
first-order nonlinear partial differential equation (B 1) subject to the initial condition

x̄wp(t̄0) = x̄0. (B 2)
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